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—— Abstract

The rapid evolution of learned data structures has revolutionized database indexing, particularly for
sorted integer datasets. While learned indexes excel in static scenarios due to their low memory
footprint, reduced storage requirements, and fast lookup times, benchmarks like SOSD and TLI have
largely overlooked compressed indexes and SIMD-based implementations of traditional indexes. This
paper addresses this gap by introducing a comprehensive benchmarking framework that (i) evaluates
traditional, learned, and compressed indexes across 12 datasets (real and synthetic) of varying types
and sizes; (ii) integrates state-of-the-art SIMD-enhanced B-Tree variants; and (iii) measures critical
performance metrics such as memory usage, construction time, and lookup efficiency. Our findings
reveal that while learned indexes minimize memory usage, a feature useful when internal memory
constraints are mandatory, SIMD-enhanced B-Trees consistently achieve superior lookup times with
comparable extra space. On the other hand, compressed indexes like LA-vector and EliasFano
provide very effective compression of the indexed data with slower access speeds (2x—3x). Another
contribution of this paper is a publicly available benchmarking framework (composed of code and
datasets) that makes our experiments reproducible and extensible to other indexes and datasets.
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1 Introduction

The rapid development of learned data structures has significantly enhanced the performance
of lookups in database systems, particularly for sorted integer datasets. These data structures
have been extensively evaluated in recent years over static and dynamic scenarios through
comprehensive benchmarks, such as Search on Sorted Datasets (SOSD) [21, 16] and the
Testbed for Learned Indexes (TLI) [32], thus identifying the indexing solutions that perform
best under some specific conditions.

In the static context, which is the one of interest in our paper, learned indexes have emerged
as the dominant choice due to their low RAM footprint, reduced disk space requirements,
and faster lookup times compared to traditional indexes. Despite this prominence, these
benchmarks failed to consider other kinds of indexes, such as compressed indexes [8, 7, 19] and
compressed+learned indexes [2, 1]. These other data structures are much more interesting
because they are “computation friendly”, in that they not only minimize the storage space
but also incorporate some specific succinet/compressed indexes that allow fast access to
compressed data. Comparing these data structures against the ones already experimented
in SOSD [21, 16] and TLI [32] is fundamental to offer a comprehensive comparison, and it
is challenging due to the wealth of state-of-the-art technical solutions available. Notable
contributions include traditional compressed indexes [26] and newer methodologies leveraging
learned compressed indexes [11]. Additionally, known benchmarks often employ unoptimized
baselines, which, for example, do not include some recent implementations of traditional
indexes (i.e., B-Tree) with SIMD (Single Instruction Multiple Data) operations [29, 15, 17]
that achieve exceptional lookup times with no extra space.

The present paper aims to build on these premises by experimentally exploring the
performance of learned and compressed indexes more thoughtfully, thus offering new insights
into their efficiency and applicability in various data contexts. To reach our goal, we designed
a comprehensive benchmarking framework for traditional, learned, and compressed indexes
working on static integer datasets that: (i) uses eight real datasets and four synthetic ones of
different types (graphs, ratings, time series,...) and size (from 1 to 800 million elements); (ii)
includes the implementation of a SIMD-BTree and a SIMD-Sampled-BTree based on [29],
that achieve state-of-the-art performance on pointwise queries; (iii) provides scripts to run
the experiments and obtain comprehensive reports of its results; (iv) extends the previously
existing benchmarks (i.e., SOSD and TLI) in the static context by integrating compressed
indexes and including the measurement of other useful metrics (i.e., index size, RAM footprint,
build time, and missing items lookup times); and, last but not least, (v) it is extremely easy
to be extended with new indexes and datasets.

Through this benchmarking framework, we shed some more light on the performance
of learned, compressed, and traditional indexes. Indeed, (1) learned indexes are fast, very
efficient in space occupancy, and the best in terms of memory footprint at building time; but
(2) existing and our proposed SIMD-variants of BTrees achieve faster lookup times over all of
the 12 tested (real and synthetic) datasets using none-to-minimal extra space; and (3) when
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Table 1 Details on the real and synthetic datasets of integers (32 and 64 bits) used in the
experiments. Values with the ~ symbol are approximated for clarity.

Type ‘ Dataset Name Size  Average Gap # of Duplicates
‘ CompanyNet 1M ~ 2801 2
— ‘ Friendster 50M ~ 13 0
= | Amzn 200M ~ 21 1
| Wiki 200M ~2 109 562 989
| Normal 50M ~ 43 710309
£ | Lognormal  50M ~ 42 919 544
igi | Exponential ~ 50M ~43 1009 869
” | Zipf 50M ~43 6311198
| Amzn64 800M  ~ 1.2 100 0
% | Facebook64 ~ 200M  ~9.2%10" 0
3 | OSM-Cellids64  800M  ~ 1.7 % 10" 0
| Wiki64 200M ~1 109 562 989

data compression is mandatory, the best-compressed indexes are LA-vector and EliasFano,
but their lookup times are at least 3x slower than that of SIMD-BTrees. We can report in
the main article only a few figures/plots that we consider most significant for our discussion
because of space constraints, and thus we include a Supplementary Material part and a file
named “plot_recap.pdf” in our public code-repository? to allow the interested reader finding
all experimental figures and further comments.

The paper is organized as follows. Section 2 describes the 12 datasets on which we
performed our experiments; Section 3 details our experimental design and settings; Section 4
describes the 15 indexes we tested; Section 5 presents the experimental results conducted on
all the described indexes and datasets, and foresees future research directions.

2 Datasets

The experiments conducted on the tested indexes used some datasets that varied widely in
terms of size, distribution, nature, and other characteristics. Specifically, we considered three
types of datasets: synthetic datasets of 32-bit integers, with a size of 50 million elements;
real datasets of 32-bit integers, with sizes up to 200 million elements; and real datasets of
64-bit integers, with sizes of 800 million elements for Amzn64 and OSM-Cellids64, and 200
million elements for Wiki64 and Facebook64. All the datasets are downloadable from our
public code repository through proper scripts, and they are also available in Zenodo?.

The choice of their size was dictated both by data availability and by the memory
limitations of the machine on which the experiments were executed. In total, our experiments
involved 12 datasets comprising roughly 2.6 billion integers. The detailed description of each
dataset is in Section A.1 of the Supplementary Materials for space reasons, but a rough
overview is provided in Table 1, and the following bulleted list:

2 https://github.com/LorenzoBellomo/SortedStaticIndexBenchmark
3 Link to all datasets: https://zenodo.org/records/15240501
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Four 32-bit real datasets: Two of these datasets are taken from SOSD [21, 16] (i.e., Amzn
and Wiki), while the other two are derived from graphs of social or corporate networks,
respectively Friendster* and CompanyNet, the latter being proprietary to a Sadas client;

Four 32-bit synthetic datasets: All integers in these datasets are generated synthetically
using standard routines. Specifically, three of these datasets used generators from the C++
standard library (i.e., normal, lognormal, and exponential), while the Zipf distribution
was generated using a specific script [30];

Four 64-bit real datasets: All integers in these datasets are taken from SOSD [21, 16] (i.e.,
Amzn64, Wiki64, OSM-Cellids64, and Facebook64).

As a note, we point out that we have generated two additional datasets to run a preliminary
experiment on performance scalability with the dataset size; specifically, we generated a
subset of Amzn64 (containing the first 50 million items), and a larger 800 million integer
normal-distribution dataset (using the same parameter as the Normal dataset, and still 32
bits unsigned integers).

3 Experimental design

The experimentation focused on static datasets, where we tested three types of indexes

(traditional, learned, and compressed), described in detail in Section 4, and whose results are

reported in the file “plot_ recap.pdf” in our repository®. For each index, we measured the

following metrics:

Disk Space Footprint: This is the space taken by each tested index, measured in MB®. The
results are detailed in the plots of Figures 2, 3. We notice that, for a fair comparison
with the compressed indexes, the disk space of the non-compressed ones (i.e., learned and
traditional) includes the memory required to store the std::vector containing the data.

Construction Time: In some applications, it is crucial to have an index ready quickly so
that it can be rebuilt fast after a few changes. We measured the time (in milliseconds)
required to construct each index to evaluate this issue. The results are shown in Figure 1.

RAM Footprint: A fundamental metric for assessing the efficiency of an index is the peak
internal memory required to construct it. In our experiments, we calculated the maximum
and minimum memory peaks. We reported it as the “ratio” with the memory required
by the std::vector, also reporting the dataset where these ratios were obtained.

Pointwise Query: This query evaluated the average time to search for a single element,
present or not in the indexed dataset. The average was computed over 1 million distinct
queries on each dataset. The sampled distinct queries are fixed for all indexes, and they
are chosen as follows: the 1 million query items are sampled uniformly at random from
the input, for the experiment on existing items; while they are generated uniformly at
random (between the minimum and the maximum key) for the experiment on missing
items. Depending on the tested index, the search returns one of the following results:
(i) the index or value of the first element greater than or equal to the queried value
(Next-GEQ), or a “safe” value indicating that no element greater than or equal to the
query exists; (ii) an approximation (with error) of the position of the Next-GEQ in the
vector, typical of learned indexes. In this second case, we ensure timing consistency by
counting the cost of searching the exact position via the lower bound function of the

4 Friendster Social Network Dataset: https://snap.stanford.edu/data/com-Friendster.html
5 https://github.com/LorenzoBellomo/SortedStaticIndexBenchmark
6 Values in MB were rounded up to the nearest integer.
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C++ standard library. Choosing to use lower bound for the last-mile search has an
impact on the final query results timings, but we decided to use it because of the following
reasons: (i) the binary search is the default option for all the learned indexes that provide
an approximate position; (ii) the implementation of the lower_bound function of the
C++ standard library is compiler dependent, making it very hard to reliably benchmark;
(iii) Marcus et al. [21, 16] analyzed the impact of the search algorithm in their work
on SOSD, testing linear, binary, and interpolation search, and found that interpolation
search and binary search obtain comparable results (difference of ~ 2%), while linear
search performed worse; (iv) the main point of PGM++ [20] is to improve the PGM-index
by changing the search algorithm for all the PGM layers, obtaining results that, as seen
in Section 5, are in line with those of PGM-index. For those reasons, we deemed this
part of the benchmark too focused on the task of “measuring search time”, rather than
focusing on the indexes, so we decided to ignore it. The results of these experiments are
shown in Figures 2, 3, and in Figure 4 of the Supplementary Materials.

Range Query: This benchmark evaluates the time required for each index to perform a
random access on the indexed data and a scan of the subsequent x elements, with
z = 10,100,1K,10K. Time was averaged on 100000 range queries. This experiment
was run on four selected datasets (i.e., CompanyNet, Amzn, Wiki, and Facebook64)
and is particularly useful for assessing the performance of compressed indexes and of
the SIMD-BTree (which permutes the data). In fact, the other indexes rely on the
std::vector, and thus their scan performance depends on this latter, so we refer to it in
the plots. The plots are reported in Figure 5 in the Supplementary Materials and in the
file “plot_ recap.pdf” in our repository.

The final time performance of the construction, range, and pointwise queries was computed
by repeating each experiment 10 times and then averaging the individual results.

4 Indexes (traditional, learned, and compressed)

Table 2 summarizes the key information about the tested indexes. Specifically, it shows the
citations of relevant works for each index, the year of the last update to the corresponding
library (to assess its “maintenance vitality”), the space required to represent the original
data, the space needed to construct the indexing structures, and the support for the “Rank”
operation (indicating whether it is directly available in the library or easily derivable).

The selection of the test indexes was based on the state of the art in this field [27, 18, 22,
12, 20, 31, 6, 2, 1, 13, 25, 24, 19] and the most relevant benchmarks found in the literature, as
previously mentioned (that is, SOSD [21, 16] and TLI [32]). Regarding the state-of-the-art,
three main families of indexes can be identified: (i) Traditional and/or Baseline Indexes, (ii)
Learned Indexes, and (iii) Compressed Indexes.

It is important to note that while compressed indexes encapsulate both the index and
the input data within a space smaller than a std::vector (hence, they could also be called
compressed self-indezes), traditional and learned indexes occupy the space of the std::vector
plus the extra space needed to store the index, although this extra space is often minimal.
These solutions are particularly interesting in contexts where the input data vector is read-
only and multiple indexes are required for different primary keys, or when the input data is
large and stored in external memory while the (small) index is kept in internal memory to
support fast searches.

In the next Sections, we describe briefly all the tested indexes. For a more detailed
description, we refer the readers to Section A.2 of the Supplementary Materials.

5:5
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Table 2 Information about all tested indexes. All compressed indexes and PLEX only support
integers, while all the others also support floating-point numbers. All the licenses of the listed tools
allow commercial use. The “Space” column specifies the space required for the index and the (input)
data representation distinguishing among several approaches whose acronyms stand for: ED =
Explicit Data (storage), CD = Compressed Data (storage), CSD = Customizable Sample of (indexed)
Data, CS = Customizable Size, NCSD = Non-Customizable Sample of (indexed) Data, and PD =
Permuted Data. The “Rank Supported” column specifies whether the rank of an element can be
extracted from that index, or can be “derivable” through elementary operations, or is “approximate”
and thus the programmer has to implement a final step based on binary search.

Data o Last Rank
Type Structure Citation Update Space Supported
‘ Index Data
| CSS-Tree [27] 2019 CSD  ED YES/Derivable
‘ SIMD-BTree new 2025 0 PD YES
‘ SIMD-Sampled-BTree new 2025 CSD ED YES
| FAST [15] 2010 0 PD YES
¥ | Static-search-tree [17] 2025 0  NCSD NO
°
| RMI [18,22] 2020 CsS ED  YES/Approximate
‘ PGM-index [12] 2024 CSD ED YES/Approximate
| PGM++ [20] 2024 CSD  ED  YES/Approximate
| PLEX [31] 2021 CSD  ED YES/Derivable
| ALEX [6] 2024 NCSD  ED NO
5| LA-vector 2, 1] 2024 CSD  CD YES
<
s ‘ d-code-vector [13] 2019 CSD CD YES/Derivable
ae
2 ‘ ~-code-vector [13] 2019 CSD CD YES/Derivable
]
=
= EliasFano [13] 2019 NCSD  CD YES
3
S Roaring [19] 2024 NCSD  CD YES
‘ std::vector - - 0 ED YES

4.1 Traditional, SIMD, and Baseline Indexes

This section describes the traditional indexes (CSS-Tree [14, 27]), the two SIMD trees found

in the literature (Static-search-tree and FAST), and the baseline (std::vector) used in the

benchmark, whereas the next section details our new proposed SIMD implementation of the

classical B-Tree

std::vector: The simplest data structure commonly used to store ordered integer keys. To
search for an element, we use the lower_bound function (binary search).

CSS-Tree: Implementation” of the “Cache Sensitive Search Tree” described in [27].

FAST: Implementation® of the SIMD-BTree described in [15].

7 (SS-Tree implementation: https://github.com/gvinciguerra/CSS-tree/
8 FAST: https://github.com/curtis-sun/TLI/blob/main/competitors/fast/src/fast.h
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Static-search-tree: Extremely recent, highly optimized RUST implementation® [17] of the
static search tree described in [29]. However, this index was not integrated directly into
our benchmark because: (i) it runs only on 32 bits; (ii) its maximum allowed value is
below 232 — 1; and (iii) some optimizations are lost while compiling the functions as a
static library. For these reasons, we decided to run the author’s benchmark and dedicate
a paragraph in Section 5 to comment on its performance.

Our Implementation of a B-Tree for Modern Architectures

The experience gained from and the results obtained with our benchmarks led us to design
and experiment with two new indexes'? that leverage SIMD operations.

To define indexes with SIMD operations, we will use the following terminology:

key: A single computational unit. In our case, one integer.

vector: The sequence of keys on which atomic SIMD operations are performed.

block: A group of keys stored contiguously in a B-Tree node, serving as the smallest reading
unit of this data structure.

SIMD-BTree is our implementation of a Static B-Tree (a.k.a. S-Tree) as proposed in [29].
It is a pointer-free B-Tree [14], whose elements are placed in a cache-sensitive layout like the
one of CSS-Tree. Its construction is obtained by generalizing the more popular Eytzinger
layout [28], which is based on a binary tree, to the general case where the fanout of the
tree is B (i.e., the size of a B-Tree node). Additionally, it uses SIMD primitives to traverse
the tree efficiently. Since the data is permuted to “simulate” a layout resembling that of a
B-Tree without explicitly realizing it, the additional space this index requires, beyond the
input data (appropriately permuted), is zero. Note that even if the elements are permuted,
the items can still be retrieved through their index (rank) in their original sorted order. The
library we developed allows us to specify the SIMD extension to use (and consequently the
size of the vector of integers to process “atomically” using this mode) and the number of
vectors per block in the B-Tree. Our experimental results were obtained using AVX512
with one vector per block, which we found to be the fastest configuration. This is coherent
with the expectations, indeed one such vector has the same size as the cache line. In our
implementation we included several algorithm engineering choices suggested in [29], (i.e.,
blocks nodes are ensured to be aligned with the cache lines; huge pages'! are set to reduce
the overhead due to the translation of virtual addresses). The library supports all C++
numeric data types by selecting the appropriate intrinsic primitives at compile time (through
extensive use of templates). As mentioned, the tree is stored as a vector of elements, where
each node occupies a contiguous block of ng elements, ng being the fixed size of a node. To
resolve a query, the query value is splatted (copied in all the positions) into a vector register.
The algorithm then traverses the tree starting from the root (the first np elements of the
data vector), loading the node in a vector register, and comparing all of its elements with
the query value to determine the child index where the search has to continue. This process
repeats until a leaf node is reached. The expert reader may have noticed the similarities in

9 RUST S-Tree: https://github.com/RagnarGrootKoerkamp/suffix-array-searching
10 STMD-BTrees repository: https://github.com/mattiaodorisio/s-tree
" Debian Hugepages Wiki: https://wiki.debian.org/Hugepages
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between this SIMD-BTree and FAST [15], the main differences reside in the in-node items
ordering (sorted for the SIMD-BTree, recursively stored in breadth first layout in FAST),

the data-type supported, and other engineering design choices!'2.

SIMD-Sampled-BTree is derived by applying the previous data structure onto a subset of
the input data extracted via regular sampling with a fixed step. The library we developed
allows for specifying, on top of the parameters of SIMD-BTree, an additional one that defines
the sampling ratio from the input data. Consequently, a Rank query is answered in two
steps by first solving it over the (internal) SIMD-BTree built over the sampled data, and
then by computing the direct rank (again via SIMD operations) on the identified block of
the input. The advantages of this proposal are: (i) faster direct access to the elements, (ii)
easy inclusion of satellite data, which can be left at the leaf level, (iii) further extensibility to
the dynamic setting (although the current implementation does not address this case).

4.2 Learned Indexes

We have already introduced the learned indexes [18] as data structures that, through more or
less sophisticated machine learning techniques, “learn” the data distribution to be indexed to
improve search performance and space usage. These indexes differ on the machine learning
(ML) models used to “learn” the input data distribution. It is evident that the more complex
the ML model is, the more precise the training of the network is and, thus, its ability
to find the position of the searched element. However, it is equally true that the space
occupied by the model and its usage have become more expensive in terms of computational
resources. Therefore, the design of learned indexes involves a sophisticated balance between
the complexity of the ML model and its efficiency. Below, we describe five approaches to the
design of learned data structures, selected among those that are the most significant from a
theoretical perspective, the most efficient in practice, and that offer robust software libraries.

For completeness, it should be noted that some indexes that achieved the best results
in certain experiments in SOSD [21, 16] and TLI [32] were excluded from our benchmark
because they are limited to support boolean queries, and they cannot return the position
of an element in the input dataset'3, or they do not allow indexing datasets with duplicate
elements (i.e., LIPP [33]), which are typical in DBMS. The list of tested learned indexes is
the following;:

RMI (Recursive Model Index): The precursor of all learned indexes [18, 22]. In our experi-
ments, two RMI models are proposed for each dataset: the “large” and the “compact”
versions. The RMI optimizer'# outputs a list of 10 parameter combinations with models
of decreasing size. The largest RMI model is always the most efficient in query time but
uses a fixed size of 403 MB, so it is named “large.” To include a more compact RMI model
that aligns most closely with the sizes of the other (traditional and learned) indexes in
our benchmark, we added a version of size approximately 6 MB, so named “compact.”

2FAST adds a padding equal to the last (max) value to build a complete tree, possibly wasting a huge
amount of space; conversely, the SIMD-BTree allocates only the needed memory, but incurs in one
branch to check the out-of-bounds condition. The more sophisticated layout of [17] allows one to avoid
the branch, still limiting the amount of wasted memory to at most one extra page (2MB) per tree layer,
thus resulting in an even better compromise.

13 Note: ALEX also does not support the “Rank” operation, but it supports “Next-GEQ?”, which is a
sufficient requirement for our benchmark.

M RUST RMI library: https://github.com/learnedsystems/RMI
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PGMe-index: A learned index [12] '® based on Piecewise Linear Approximation, customized
using the parameter e that trades search time and space. The values used for € in our
experiments are 8, 32, and 128.

PGM++: A recent (2024) optimized variant'® of the PGM-index [20] that addresses its
search slowdown. We used the same values for € as for the PGM-index.

ALEX: A learned index!” based on the key-value store model [6] (see footnote 13).

PLEX: A learned index'® based on the Compact Hist-Tree [5] and a radix-tree. As for the
PGM-index, it uses a parameter € (i.e., maximum prediction error, which provides a
trade-off between build and lookup time) set in our experiments to the values 8, 32, and
128. PLEX is the only uncompressed index of this article that does not support floating
point numbers (this is not a limitation for this benchmark, but it may be an important
limiting issue for its wider adoption).

4.3 Compressed Indexes

The compressed indexes described in this section are of the self-index type, meaning they
encapsulate both the data to be indexed (in compressed form) and the indexing data structure
for searching them. It is important to note that many of these data structures are implemented
in the SDSL library [13]*°. For completeness, a brief description of each is provided.

EliasFano: A compressed index [8, 9, 10] for non-descending integer sequences. We used
the implementation provided by SDSL (sd__vector).

~-code and d-code vectors: They are compressed indexes [7] that store non-descending
sequences of integers using the corresponding compression algorithms [10], plus some
extra information that allows to jump over the compressed data (controlled by a “density
parameter, set to 16 and 32 in our experiments). The implementation used in our
benchmark is part of the SDSL library (enc_ vector), which does not provide the Next-
GEQ function. To this end, we derived its implementation from the Rank and Select test
library of the LA-vector data structure described below?°.

”

LA-vector: It is a compressed index [2, 1] based on Piecewise Linear Approximation, con-
trolled by a parameter bpc which was set in our experiments to 6, 8,10, 12. Additionally,
the library can compute the optimal value to minimize the space of the vector. We call
this configuration “opt”.

Roaring: It is a highly optimized compressed bitmap [19]?!, based on an implementation that
heavily utilizes SIMD operations to accelerate queries. Roaring bitmaps can be Memory
Mapped natively through the library, but they only work with sets of non-duplicate
integers (and thus they could not be applied to most of our datasets; see Table 1).

15 The PGM-index: https://github.com/gvinciguerra/PGM-index

16 PGM++: https://github.com/qyliu-hkust/bench_search/

17T ALEX: https://github.com/microsoft/ALEX

8 PLEX: https://github.com/stoianmihail/PLEX

19SDSL library: https://github.com/simongog/sdsl-1lite

20 https://github.com/aboffa/Learned-Compressed-Rank-Select-TALG22.git
21 C implementation of Roaring: https://github.com/RoaringBitmap/CRoaring
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5 Results

The server used for the experiments has 512 GB of RAM and an Intel(R) Xeon(R) Gold
6238R CPU at 2.20 GHz, with a total of 56 cores, running Ubuntu 22.04 LTS on an x86-64
architecture. The following precautions were taken to minimize interference with external
factors and ensure a fair benchmarking environment: the CPU frequency was set to the
nominal frequency, via the “cpupower” command, and “hyperthreading” was disabled.
One of the key contributions of our paper is that we packaged the benchmarking code??
and datasets into a publicly available repository?3, with the goals of:
making it extremely easy to run the benchmark and reproduce our experimental results
through a set of bash scripts that aid in installing, downloading the sorted datasets,
setting up all the RMI models, compiling, and finally running the experiments;
allowing the easy generation of consistent and valuable plots/reports. We also provide a
KTEX file that generates a visually consistent report (like the file “plot_ recap.pdf”);
allowing users to include additional indexes and datasets in the benchmark easily. Spe-
cifically, indexes can be added by just integrating it to the CMakeLists file, creating a
simple interface file with some simple methods (e.g., build, next-geq), and registering the
benchmarks to run.

This article will not explain all the details on running the benchmark because of space
constraints, but they will be available in the repository’s README file. Moreover, in this
section, we report only a subset of the plots and tables (see Figures 1, 2, 3), since the
complete set of results is provided in the Supplementary Materials at the end of this article
and in the file “plot_ recap.pdf” made available in our public repository (see footnote 23).

The following pages present the experiments conducted on all the indexes described in
the previous Section 4. Some figures are missing for LA-vector because of errors on some
datasets, for Roaring because of its limitation to run only on non-duplicate datasets, and for
EliasFano because it fails to run on three datasets.

Let us now start commenting on the construction time using Wiki as a reference dataset
(results tend to be consistent). Figure 1 shows that all indexes require negligible time to
index 200M elements (around or less than 2 seconds), except for (in decreasing time cost):
the “opt” version of LA-vector, ALEX, vy-code and d-code vectors, EliasFano, FAST, and
PLEX.

We also measured the memory footprint used during the construction of each index,
obtaining the following results (expressed as a ratio to the one needed by std::vector):

PLEX, PGM-index, PGM++, EliasFano: require a footprint that does not exceed three

times that required by std::vector (specifically, 1x—3x).

SIMD-BTree, SIMD-Sampled-BTree, v-code and d-code vectors, CSS-Tree: require a

footprint not exceeding five times that of std::vector (specifically, 1x—5x).

LA-vector uses a variable amount of memory depending on the configuration used. When

“bpc” is fixed, the maximum RAM required is 15.5x, while the minimum is 2x (on the

OSM-Cellids64 and Wiki64 datasets obtained with bpc set to 12 and 6 respectively).

On the other hand, the process of obtaining the “opt” version of LA-vector is more

memory-intensive, with a peak RAM consumption exceeding 100x on Facebook64.

ALEX ranges from a minimum of 5.6x on Wiki64 to 10.7x on CompanyNet.

22 Based on the library Google Benchmark: https://github.com/google/benchmark
Zhttps://github. com/LorenzoBellomo/SortedStaticIndexBenchmark
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The plots above report the time (in ms) required to construct the data structures
(indexes) on the Wiki dataset. The left plot shows all indexes, while the right one shows
only the indexes whose construction time does not surpass twice the average time.

Figure 1 Index construction time on Wiki datasets.

FAST has a RAM requirement that varies from a minimum of 3.4x on CompanyNet, to a
maximum of 5.6x on Books64.

Roaring is usually lighter but has a high peak on the Amzn64 dataset, needing 19.4x.

Let us now turn our attention to the time and space performance of the indexes on point-
wise queries, referring the reader to the details in Figures 2 and 3 (and Figures 4 in the
Supplementary Materials). In Figure 2, the red bar represents the time-space performance
of std::vector, which can be seen as the reference being the space taken by the input data.
The compressed indexes are on its left; to its right are the traditional indexes, the learned
indexes, and our two SIMD-BTrees. On the other hand, Figure 3 provides a different visual
representation of these results by using a two-dimensional time-space plot, highlighting the
Pareto curve (more comments in Section 5.1).

We can observe that the SIMD-BTrees (blue and green bars) significantly outperform
all the traditional indexes, and also obtain better time performances on pointwise queries
than all learned indexes on all datasets, with only PLEX, RMI, and ALEX obtaining similar
results in some experiments. In the case of compressed indexes, the situation is more unstable,
as different datasets tend to show significantly different performance patterns. Nevertheless,
the indexes that tend to obtain the best results on average are EliasFano (Pareto-optimal in
8 out of 12 datasets), and LA-vector (Pareto-optimal in 7 out of 12 datasets).

Table 3 shows a compact view of the best-performing indexes on each dataset. For a
deeper analysis of the results, we refer the reader to Section A.3 of the Supplementary
Materials, whereas all plots are available in the “plot_ recap.pdf” file on our code repository.
We highlight that the repository contains plots showing the time performance for increasing
the dataset sizes (Amzn64 with 50M-800M items and Normal with 50M—-800M items). These
plots show that the performance of indexes tends to have a consistent slowdown (up to 2x)
as the dataset size increases (up to 16x). As future work, we plan to further extend the
dataset sizes.
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The figures above show the results corresponding to the space occupied and elapsed
time for pointwise queries on all tested indexes (traditional, learned, and compressed).
For each dataset and index, the top part shows the average time (in ns) needed to make
a query on existing items in the dataset, while the bottom part shows the required space
in MB (where we added the space of the std::vector for traditional and learned indexes).
The results show only the best-performing parameter configurations for each index (in
the case of RMI, the best performer is the “compact” configuration).

Figure 2 Space-time plots for pointwise queries on 3 real datasets and 1 synthetic.

As previously mentioned in Section 4.1, the performance of the RUST Static-search-tree [17]
is analyzed separately. We ran its benchmark, which performs several Next-GEQ queries
on increasing-size datasets. We limit our analysis to: (i) comparing the average ns per
query on datasets whose size is comparable to ours (50M, 200M, 800M); and (ii) serial
queries without batching, that would substantially improve the throughput, but would not
be comparable with all the other experiments. All the results are obtained on uniformly
distributed datasets of 32-bit unsigned integers. The JSON file with the performance dump
is in our public code repository. The measured times are: (i) on a dataset of roughly 50M
items, Static-search-tree requires 83 ns per item on average, while our SIMD-BTree obtains
roughly 111 ns per item; (ii) on a dataset of roughly 200M items, Static-search-tree requires
99 ns per item on average, while our SIMD-BTree obtains roughly 110 ns per item; (iii) on
a dataset of roughly 800M items, Static-search-tree requires 177 ns per item on average,
while our SIMD-BTree obtains roughly 192 ns per item. So the distance between the two
implementations shrinks or becomes negligible as datasets grow in size.
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The plots recap the experimental results about the occupied space/time needed for
pointwise queries for traditional and learned indexes. For these datasets, for each index,
and each tested configuration, we plot the extra space occupied (in MB) on the x-axis,
and the time (in ns) per pointwise query on existing items in the datasets.
Additionally, a black line shows the Pareto frontier for traditional/learned indexes. The
indexes that sit on top of the Pareto frontier offer the best space-time trade-off. Non-
compressed indexes whose size exceeds one-fourth of the space required by std::vector
were excluded for clarity. None of the excluded indexes were on the Pareto frontier.

Figure 3 Pareto Frontier: Traditional and Learned Indexes.

5.1 Take-home message

From this series of experiments (see Table 3 and Figure 3), we can conclude that there is
no single “best performer.” Instead, the “best” depends on several factors such as the data
distribution, the size of the dataset, and the type of query to be supported.

Excluding the four datasets where significantly different performances were observed (i.e.,
Wiki, Wiki64, OSM-Cellids64, and Zipf), for all other datasets, the best space-time trade-
off is provided by: EliasFano and LA-vector, for compressed indexes; by RMI,
PLEX, and ALEX, for learned indexes; and by the two variants SIMD-BTree and
SIMD-Sampled-BTree, proposed by us for traditional indexes. We point out that
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Table 3 Summary of the most performing indexes for each tested dataset: “SIMD-BTrees” refers
to both SIMD-BTree and SIMD-Sampled-BTree.

dataset best-performers
group name traditional indexes learned indexes compressed indexes
CompanyNet SIMD-BTrees PLEX EliasFano, LA-vector
?3 Friendster SIMD-BTrees PLEX, RMI EliasFano, Roaring
~ Amzn SIMD-BTrees ALEX EliasFano
Wiki SIMD-BTrees PLEX, ALEX LA-vector
S Normal SIMD-BTrees ALEX EliasFano, LA-vector
E Lognormal SIMD-BTrees RMI EliasFano, LA-vector
E Exponential SIMD-BTrees ALEX EliasFano, LA-vector
@ Zipf SIMD-BTrees RMI, PLEX LA-vector
Amzn64 SIMD-BTrees RMI EliasFano
E Facebook64 SIMD-BTrees RMI, PLEX Roaring
3 OSM-Cellids64 SIMD-BTrees RMI, PLEX ~-code and é-code vectors
Wiki64 SIMD-BTrees ALEX, PLEX LA-vector

RMI is “compiled” for each dataset, which does not allow using it on dynamically varying
datasets; and PGM-index gets the smallest storage occupancy among learned indexes, at the
expense of query time.

A deeper analysis of Figure 3 reveals that it is possible to identify specific “best performers”
for each dataset (which always include SIMD-BTree and SIMD-Sampled-BTree). In particular,
SIMD-BTree is the best choice among all traditional and learned indexes, being the only
index always on the Pareto frontier. Among compressed indexes, however, there is no single
choice, as this depends on the dataset being indexed.

To facilitate discussion over each specific dataset, we identify some “clusters” of them
with the same “best performers.”

Uniform group: When the data distribution is approximately uniform (i.e., CompanyNet,
Amzn, Amzn64, Friendster, Facebook64), EliasFano and Roaring are consistently the
best-compressed indexes, both for the space occupied — up to 4x smaller than std::vector—
and for the time required for pointwise queries — though still at least 4x slower than our
two SIMD-BTrees, but about 1x—2x faster than std::vector.

Normal-Lognormal-Exponential group: On these datasets, the best-compressed indexes are
LA-vector and the two implementations of EliasFano, which achieve query times that are
3—4x slower than those of SIMD-Sampled-BTree. On these datasets, RMI and ALEX are
the only learned indexes that achieve performance nearly on par with the SIMD-BTrees.

Duplicate group: In this group of datasets (i.e., Wiki, Wiki64, and Zipf), the best-learned
indexes are PLEX and ALEX, while the best-compressed index is undoubtedly LA-vector:
it obtains great compression rates (4—-15x less space than std::vector) and query times
that are consistently better than those of std::vector.

OSM-Cellids64: The performance of the indexes on this dataset is part of its cluster, probably
because of the extremely particular dataset distribution. On this dataset, RMI and PLEX
are the best-learned indexes; whereas we notice that this is the only dataset where, among
the compressed indexes, y-code and J-code vectors are Pareto-optimal.
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We conclude the “take-home message” by noting that our benchmarks assume the data is
already sorted and indexes can “copy” it to work on. In other cases, we observe that:
If the data is already sorted and cannot be copied (“read-only” mode), the use of
compressed indexes or indexes that use an internal copy of the data (i.e., SIMD-BTree,
CSS-Tree, SIMD-Sampled-BTree, FAST, and ALEX) is pointless, as this would increase
space consumption. In this scenario, learned indexes are the best choice, offering efficient
time performance and a very low memory footprint.
If the data is not sorted (also known as secondary key indexing), it is necessary to
maintain their sorted permutation via pointer arrays or succinct encoding [23], thus
requiring the consideration of this extra space in the disk-space footprint of the indexes.

5.2 Conclusions and Future Work

From this extensive range of experiments, it is evident that one of the characteristics that
made learned indeves appealing, as mentioned in the original RMI paper [18]24, and related
to their “significant benefits” over classical indexes, is challenged by SIMD version of BTrees
(including the one of [17]). These prove to be extremely fast and compact when it is possible
to modify the “layout” of the input data and leverage the power of SIMD processing. Indeed,
the SIMD-BTree resides on the Pareto curve in every dataset, demonstrating its extreme
effectiveness in both time and space efficiency. The Pareto plots also highlight that, in the
case of compressed indexes, the situation is more “varying,” but the indexes that consistently
come closest to the Pareto curve are EliasFano and LA-vector. The only aspect where learned
indexes still outperform all other indexes (even SIMD-based ones) is their memory footprint
at building time, which is indeed negligible and thus extremely advantageous if the data to
be indexed is read-only, sorted, and stored on memory-constrained clients.

It should be noted that this wide range of trade-offs is very interesting and useful
for designing optimizers capable of selecting on-the-fly the indexes that best adapt to
the distribution of input data, user requirements, and possible “constraints” imposed by
underlying applications. In this context, the speed of index construction, already emphasized
earlier for learned indexes, is crucial to enable their adoption on-the-fly following their
selection. This aligns perfectly with current trends in scientific research [4, 3, 34|, where the
focus is shifting from developing (individual) data structures (learned and/or compressed) to
designing “single-/bi-/multi-criteria optimizers” capable of selecting, from a family of potential
data structures, the one that achieves the best trade-off among a series of computational
criteria: typically space, time, and energy.

Our intention, moving forward, is to leverage these recent developments and our ex-
perimental results to design and implement an optimizer operating on a family of indexes
whose possible configurations take into account the time efficiency of SIMD-BTree, the
compactness of learned indexes, and the computation-friendly compression achievable with
the encoding of EliasFano, Roaring, or LA-vector. Additionally, we aim to investigate the
use of SIMD instructions and batching queries in the context of learned indezes, further
accelerating query times while maintaining a low memory footprint and drawing inspiration
from the work of Zhang et al. [34]. As a final note, we plan to provide a more comprehensive
experiment to measure the impact of dataset size on the time-performance of queries in
compressed /learned/classic indexes.

24« we have demonstrated that machine-learned models have the potential to provide significant benefits

over state-of-the-art indexes...”
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A Supplementary Materials

Section A.1 provides all the details, links, and parameters used for extracting, downloading,
and generating the datasets. Section A.2 describes in more detail the tested indexes, giving
a short glimpse at their inner workings. Section A.3 provides a textual deep dive into the
results in all the single datasets.
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A.1 Dataset Details

In this section, we describe all the methods used for extracting and generating the datasets

used in this benchmark:

CompanyNet: Dataset derived from a graph via concatenation of its adjacency lists. The
first list is represented as is; each subsequent i-th list is stored by adding each of its
values to the maximum value in the previous list, incremented by 1.

Friendster: Dataset derived from the Friendster?® social network, provided by Stanford,
using the same method as CompanyNet.

Amzn: Book ratings from the Books_ 200M_ uint32 dataset from SOSD.

Wiki: Wikipedia page edit timestamps from the wiki_ts_ 200M_ uint32 dataset.

Normal: Synthetic dataset generated using the C++ standard library. The parameters used
are u = UINT32_MAX/2, and ¢ = UINT32_MAX/4.

Lognormal: Synthetic dataset generating using the C++ standard library. The parameters
used are =0 and o = 0.5. All values are then multiplied by UINT32_ MAX/5.

Exponential: Synthetic dataset, generating using the C++ standard library. The parameter
of the distribution is z = 2, and each value is multiplied by UINT32_MAX/5.

Zipf: Synthetic dataset where the parameters used are max_ value: UINT32_MAX/2 and
g = 0.7, generated using the tool in [30].

Amzn64 : books 800M_ uint64 dataset from SOSD.

Facebook64: fb 200M_uint64 dataset from SOSD

OSM-Cellids64: osm_ cellids 800M_ uint64 dataset from SOSD

Wiki64: It uses the same values as in dataset “Wiki”, but storing them in 64-bit integers.

A.2 A Detailed Description of Tested Indexes

This Section expands the description provided in Section 4 of the main article, and it offers
a brief description of the inner workings of all of them. The detailed description of the
SIMD-BTree and SIMD-Sampled-BTree is provided in Section 4.1 of the main paper.

std::vector is the simplest data structure commonly used to store ordered integer keys and
is provided by the C++ standard library. To search for an element (integer) within the
vector, the lower_bound function (also part of the standard library) is used, which returns
the NextGEQ of the queried key.

CSS-Tree is a Header-Only implementation of the “Cache Sensitive Search Tree” described
in [27]. The core idea behind this data structure is to create B-Tree nodes sized to fit a
machine’s cache line, avoiding using internal pointers and allowing navigation within the
structure through arithmetic operations on offsets.

FAST is one of the earliest (2010 [15]) attempts at a SIMD-BTree, where the tree is logically
organized to optimize for architecture features like page size, cache line size, and SIMD width
of the underlying hardware.

25 Friendster Social Network Data: https://snap.stanford.edu/data/com-Friendster.html
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Static-search-tree recently released RUST library [17] implementing the S-Tree described
in Algorithmica [29]. This implementation proposes the S-Tree along with all the proposed
ideas for future works, and heavily optimizes everything. One of the most valuable additions
to the original Algorithmica article is the added possibility of batching queries to increase
the throughput dramatically.

RMI (Recursive Model Index) is undoubtedly the precursor of all learned indexes (2018) [18,
22]. Tt is a learned index based on two levels: The first level estimates the position of the
searched element, directing the search to a second level composed of multiple ML models,
each tasked with providing a more precise estimate. The type of ML model used in these
two levels is customizable (e.g., linear, cubic, etc.), as are other parameters (such as the
branching factor of the first level and the number of models in the second). The authors also
proposed an optimization technique [22] to select the best combination of these parameters
for a given input dataset. RMI is implemented in Rust and, for each dataset, creates three
files (with extensions .cpp, .h, and .hpp) that can be used as a model interface.

PGM-index (Piecewise Geometric Model) [12] is historically the second learned index
proposed in the literature (2020). It is based on a hierarchical data structure, a la B-Tree,
where the hierarchy is obtained by calculating at each level a Piecewise Linear Approzimation
(i.e., a sequence of segments) of the data to be indexed, defined based on a parameter €. The
idea is to construct a sequence of segments s; = (k;j,p;,%;) such that every element x at
position r to be indexed is “covered” by a segment s; where the distance between = and the
prediction obtained with s;, i.e., p; X r+1;, is at most €. It has been shown [12] that this
representation is compact in practice, with interesting theoretical worst-case bounds.

PGM++ is a recent (2024) optimized variant of PGM-index [20] that addresses its slowdowns
in certain contexts, particularly where it performs inefficiently compared to RMI. The authors
focus on the last-mile search, i.e., the final binary search step required after predicting the
position of the searched element using ML models.

ALEX is one of the most performant learned indexes available in the literature (2020),
developed by Microsoft Research [6]. Its API is of the key-value store type, where keys
and values can have different types. ALEX is implemented in standard C++14, a version
unsuited for our benchmark, so we modified some lines of code that were made obsolete?S.

PLEX is one of the most recent learned indexes [31] available in the literature (2021), based
on a single hyperparameter (e, the maximum prediction error) that controls the trade-off
between search time and the space occupied by the index. PLEX approximates the input
data using a spline function. It then constructs a second level consisting of an ML model
based on Compact Hist-Tree (CHT). This second level is essentially a hybrid between a
traditional radix-tree (which enables the binary representation of data) and a learned index
(which approximates the underlying data distribution using buckets/histograms).

268ome indices exploit features of more recent standards than C++14. PGM-index, PGM++,
LA-vector, and SIMD-BTree use a default mechanism of range-based for loops, library functions
(i.e. std::is_same_v, std::is_floating_point_v), and if constexpr expression available start-
ing C++17; SIMD-BTree also uses consteval expressions, available starting C+-+20. ALEX uses
std::allocator<T>::destroy that was removed in C+-+20, but is still available with a different
signature, thus requiring a tiny adjustment.
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EliasFano is a compressed index [8, 9, 10] based on the corresponding algorithm for com-
pressing ascending (or non-descending) integer sequences. The compression algorithm first
represents each integer in binary form using logm bits, where m is the maximum integer in
the collection. The approximately log(m/n) least significant bits (where n is the number of
input elements) are then stored consecutively in a vector L, while the number of integers
sharing the first logn bits are represented in the unary form in a vector H. The total space
occupied by this compressed representation can be estimated as n(2 + log(m/n)) bits. This
representation also guarantees constant-time access to integers and logarithmic search costs.

~-code and d-code vectors are compressed indexes [7] that store non-descending sequences
of integers using the corresponding compression algorithms [10] and then add appropriate and
succinct extra information for random access to the data. Specifically, the v-code technique
represents each integer in binary, removes the most significant bit, and then prepends the
unary representation of the remaining bit count. The d-code technique recursively applies
the v-code to that bit count. The extra information consists of an offset vector, suitably
encoded, that points to blocks of integers compressed using the previous two codes and of a
size chosen by the programmer (called density).

LA-vector is a compressed index [2, 1] based on the same algorithmic principles as PGM-index.
It approximates the distribution of the input data using a Piecewise Linear Approximation
(PLA) with parameter €, and then stores for each element of the input vector only the difference
between it and the value returned by the segment approximating it, using log,(2¢ 4 1) bits.
The LA-vector library also utilizes some compressed data structures from the SDSL library
to support efficient access and search (Next-GEQ) on the compressed representations of
the elements. Additionally, the library offers the ability to minimize the space occupied
by LA-vector by appropriately selecting the value of €, potentially varying it throughout
the input sequence to account for variations in data regularity. The final result of this
optimization (abbreviated as “opt” in the experiments) is an index that is highly compressed
but requires more query time.

Roaring is a highly optimized compressed bitmap [19], based on an implementation that
heavily utilizes SIMD operations to accelerate queries. To compress the bitmaps, Roaring
partitions the data space into sets: [0,216), [216 217) [217 218) ... 231 232) The 16 least
significant bits of each integer are represented in one of the following three ways: (i) a bitset
container of about 8 kB; (ii) an array container of 4096 sorted 16-bit integers; (iii) “runs” of
consecutive integer pairs from s to s + [ — 1 represented as (s, ).

A.3 Detailed Experimental Results

In this Section, we comment in detail on the experimental results on all datasets, pointing
out the “best performers” in terms of space-time tradeoff, as reported in Table 3, shown in
the main article. Figure 4 shows the lookup plots for all indexes on the Friendster and Wiki
datasets. In these plots, for each index, it is possible to see the slight difference between
making queries about existing and missing items (left and right columns, respectively). Most
datasets show slight differences between those two kinds of queries (see the Friendster row),
but the ones that differ most are those on datasets with a high amount of duplicates (see the
Wiki row). In those cases, all indexes tend to have a lower query time for missing items. We
recall that all plots, tables, and error reports are available in the “plot_ recap.pdf” file in our
public code repository?”.

2"https://github.com/LorenzoBellomo/SortedStaticIndexBenchmark
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The plots above report the time (in ns) required to perform a pointwise query (on
average) for traditional/learned indexes on the left and compressed indexes on the right.
The left/right bars show the average time to search for an existing/missing item in the
collection.

Figure 4 Average lookup times (in ns) on the Friendster and Wiki datasets for traditional/learned
indexes (on the left) and compressed indexes (on the right).

On the real datasets, we can observe the following “best performers”:

CompanyNet: This is the smallest dataset, and its performance should not be considered
fully “reliable.” Among the non-compressed indexes, we highlight the two variants of
SIMD-BTree; among the compressed indexes, we mention EliasFano and LA-vector; and
among the learned indexes, certainly PLEX.

Friendster: Among the traditional indexes, we again highlight the two variants of SIMD-
BTree; among the compressed indexes, we mention EliasFano and Roaring; and among
the learned indexes, definitely PLEX and RMI.

Amzn: Among the non-compressed indexes, we again highlight the two variants of SIMD-
BTree; among the compressed indexes, we mention EliasFano; and among the learned
indexes, certainly ALEX.
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Wiki: This dataset yields index performances that are significantly different from the others,
likely due to the many duplicates (see also the results on the Zipf dataset). Here, LA-vector
obtains an exceptional space/time tradeoff. For traditional indexes, the SIMD-BTrees are
the best, while PLEX and ALEX are the best learned indexes. It is worth noting that on
this dataset (and all others with many duplicates), searches for items absent from the
dataset are much faster on almost all indexes, up to three times faster.

On the synthetic datasets, we can observe the following “best performers”:

Normal, LogNormal, and Exponential: Among the non-compressed indexes, we highlight
the two variants of SIMD-BTree, among the compressed indexes, we mention LA-vector
and EliasFano, while among the learned indexes, certainly ALEX (best on Normal and
Exponential) and RMI (best on Lognormal).

Zipf: As observed for Wiki, on this dataset too, the performance of the indexes is significantly
different compared to the other synthetic datasets, likely due to the presence of many
duplicates. There are only two “best performers,” which are LA-vector and the two
variants of SIMD-BTree. The latter achieve a 3x improvement in time performance but
lose in space due to the need to explicitly store the keys.

On the 64-bit datasets, we can observe the following “best performers”:

Amzn64: Among the non-compressed indexes, we highlight the two variants of SIMD-BTree;
among the compressed indexes, we mention EliasFano; while among the learned indexes,
RMI stands out.

Facebook64: Among the non-compressed indexes, we highlight the two variants of SIMD-
BTree; among the compressed indexes, we mention Roaring; and among the learned
indexes, we cite RMI and PLEX.

OSM-Cellids64: This dataset has a peculiar distribution that results in highly varied per-
formance, especially among the compressed indexes, which are often very slow. The only
compressed index that maintains “acceptable” time performance compared to std::vector
is d-code-vector. Regarding learned indexes, RMI and PLEX are the best, while we
mention the SIMD-BTrees as the best performers overall.

Wiki64: The same observations made for the Wiki dataset with 32-bit integers apply here.
The winners are the SIMD-Btrees, ALEX, PLEX, and LA-vector.

We conclude the experimental analysis by focusing on the performance of the indexes on
“range” queries, shown in Figure 5.
In this experiment, we consider four different sizes for the number of scanned elements (i.e.,
10, 100, 1000, and 10000), and we limit the discussion to the most performant compressed
indexes (i.e., EliasFano and LA-vector), comparing them with std::vector as a baseline:
Performance slightly improves as the number of adjacent scanned elements increases, as
the most costly step is due to the random access to the first element, but the improvements
stop being noticeable after 100 elements, where the decompression time becomes the
main bottleneck.
the std::vector obtains results that are orders of magnitude better than all the compressed
indexes in this task, while the SIMD-BTree is a close second, obtaining a slight slowdown
but outperforming by far all the compressed indexes.
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The plots above show the performance of compressed indexes in time and space relative to
range queries, where starting points are randomly sampled, and the width of the scan is
set to 10, 100, 1K, and 10K. The plot on the left shows the time (in ns) required for every
interrogation, describing the average time required per access with z = 10,100, 1K, 10K.
The plot on the right shows the space occupied by each compressed index (in MB).

Figure 5 Average time (in ns) for range queries on compressed indexes, on the CompanyNet and

Wiki datasets.
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